Despite Implementation Hurdles, Precision Medicine Holds Promise in Post-COVID Era

Precision medicine may be one of the most important tools to use in combatting and preventing future pandemics

With more institutions collecting genetic and biometric data on COVID-19 patients, precision medicine tools may be able to “predict the risk of infection, transmission pathways, and clinical outcomes in COVID patients, according to researchers in Genetics in Medicine. The data can be used to understand “potential genetic determinants of COVID-19 susceptibility, severity, and outcomes,” the researchers say.  

For Coriell Life Sciences (CLS), based in Philadelphia, its expertise in precision medicine testing and pharmacogenomicswhich is how genes affect a person’s response to drugs, meant the pandemic was a natural pivot point for the company. Scott Megill, President and CEO of Coriell Life Sciences, says that the company’s precision medicine services helped organizations test the right people with the right frequency enabling them to allow people to return to work.  

“A lot of that infrastructure and methodology that we use in our standard precision medicine approach to medication safety, we were able to retool rather quickly to address the new issues that COVID brought,” said Megill. But this doesn’t necessarily mean that precision medicine is going to be an immediate silver bullet used across health care. There are still a lot of challenges holding it back. 

Megill recently spoke with Health Evolution about the top-level trends impacting precision medicine, the challenges payers and providers encounter when implementing precision medicine, and more.  

How did Coriell Life Sciences adapt to COVID-19?  

Megill: Our legacy business is understanding how to implement precision medicine initiatives within large populations for self-insured employers, pension funds, or public sector entities. How can they across an entire population make use of new technologies, primarily genetic testing, in combination with more traditional forms of medication safety management? We’ve focused very deeply on an area of science called pharmacogenetics where one can look at variations of the human DNA to determine whether or not someone is likely to respond well to individual medications and whether those medications are going to be safe for them. In order to do that well, we had to build a technology infrastructure that would allow risk to be assessed at the population level and also at the individual level. So that we can help medical professionals steer the right care to the right person. 

Along comes COVID. That same methodology is really applicable when as an organization I’m considering, ‘Should I reopen my office and bring my employees back?’ In order to do that well, we could implement rules and say everybody needs to be tested every week to determine whether or not they’re safe. Or the smarter use of dollars would be to assess the unique scenarios with which these people work and their exposure and risk levels to determine how often we actually need to test them.  

We’re going to want to test somebody who has direct exposure to the general public a lot more frequently than someone who might work a back-office job in a very controlled environment. The same holds true for finding out the risks in a person’s community and the risks to them personally. We bring that all together into a real-time scheduling system that can affect that testing with a network of laboratories that provide those services. All of that was sort of a natural evolution of what we already had been doing with helping organizations to determine who is right for a medication safety program that includes genetic testing. 

What are the recent top-level trends going on in genetic science and precision medicine?  

Megill: Where we see genetic science really making an impact today is certainly with cancer predilection and cancer treatments. Those have been well-trodden ground and there are lots of really credible companies out there implementing it in a really positive matter. 

The other areas of genetic science, which are really starting to catch hold, are the use of pharmacogenetics to help to steer medication safety. Our DNA has a lot to do with whether or not medications are processed at a pace that is predictable by the intent of the drug. When a drug goes through pharmaceutical trials there’s an expectation that the drug will be processed by the people that take it at a certain pace. If that drug actually moves through a person’s system too fast or too slow, they have the potential for an adverse reaction. That drug could build up in their system and not actually be flushed out fast enough or it could be ineffective for them because it’s not actually able to have its therapeutic intent. A lot of that is controlled by your DNA.  

How have health care organizations integrated genetic medicine into the delivery of care?

Megill: The old axiom was that any new innovation in health care takes 17 years to actually make its way into clinical practice. Obviously, the pace of information exchange and availability has exponentially increased in just the last couple of decades. We are seeing that getting the word out on new innovations and technologies happens much faster. But we’re also seeing some of this now being driven by the patients themselves. The health care system used to be very patriarchal. The doctor was the last word on all potential medical treatment. Now we see patients starting to take ownership of their own health care.

There was a great book by Eric Topol published a couple of years ago called “The Patient Will See You Now,” which was really focused on this whole shift in the paradigmThere is now consumer-driven health and people are so much more informed bythe availability of information being driven by things like the internet. It does dramatically increase the pace at which things are making their way into standard practice. We also see things like directtoconsumer companies in the genetics field, such as 23andme and There’s a whole host of them that empower patients directly with information that they can bring into their health care provideras ammunition to help drive change.

Where we’re still seeing bottlenecks is in that basic information exchange of data because we’re still very much in a fragmented technology world when it comes to health care in the U.S.My hospital has an EHR. That information may or may not be shared with the next hospital that I go to or the next doctor that I see. It’s still very much standard practice that when I walk into a doctor’s office, I’m filling out paper formsand they’re not pulling up my records from a national registry. That’s certainly something that needs to be addressed across the nation. How do we make information much more portable? I tend to think it’s going to be driven by consumers and you’ll be able tomove your health record around with youright on your phoneI think we’re probably within a decade of seeing that sort of advancement. 

What challenges do your payer and provider partners encounter when implementing genetic/precision medicine? 

Megill: It’s a great question because the top question for everybody in this field is, ‘How does this become a standard of care?’ Ultimately, it becomes a standard of care when payers are willing to pay for it. It’s not because they are hesitant to provide the best possible care for patients. It’s that when we see things like genetic testing emerge as new possible treatment options, it’s difficult to understand what’s real initially. When you think of genetic testing and the association between drugs and genetics there isn’t one answer out there. What are the right genes to test? 

The insurance companies are being flooded with labs that are trying to get reimbursed for their version of what the answer should be and that differs dramatically. What really needs to emerge are some standards. There needs to be consortiums recognized and empowered to decide what is relevant, useful, and clinically appropriate to actually be a test that is utilized in certain scenarios. That’s part of the maturing process of any new technology that hits the market. We have to start to believe that it’s real. That has to happen first and foremost. I think insurance companies are starting to get there. They’re starting to see that evidence.

That’s the first thing. Then it’s how do we actually get it into the clinical workflow in a way that’s not disruptive? It doesn’t work if, in order to implement a genetic test or make a recommendation, the doctor has to go back to school or use a new tool that they’ve never been trained on. This really needs to be asimple implementation that doesn’t disrupt the normal course of their workflow. So that’s an implementation challenge, that’s not a scientific challenge but it does need to happen.

And then finally there needs to be an economic model that makes sense for the payers. It could be the greatest invention in the world, but ultimately these are businesses, and those businesses can’t implement something that’s going to wind up costing them even more money. The onus is on the science of the implementation, and quite frankly people like me, to ensure that there’s enough data out there to show that there’s a tremendous cost savings that can be realized when you treat people with appropriate care. Keeping them out of the hospital and away from unnecessary testing, vetting those individuals in the right way. Those are the hurdles and it’s not really unique to genetic testing. Anything new in health care has to face those challenges. 


Original article:

Last Updated: October 10, 2023